PDF Uncertainties at Hadron Colliders

Aidan Robson

Glasgow University for the CDF and D0 Collaborations

- ◆ Places where PDF uncertainties appear
- ♦ PDF-constraining measurements at the Tevatron

CDF and D0

Quantifying PDF uncertainties

PDFs are parameterised fits to DIS/fixed target DY/Tevatron data

$$xf_a(x,Q_0) = A_0 x^{A_1} \cdot (1-x)^{A_2} \cdot e^{A_3 x} \cdot (1+A_4 x)^{A_5}$$
 (CTEQ)

where a are combinations of u,d,g,u,d ⇒ 30 total parameters of which 10 fixed

Parameters determined at low scale Q_0 =1.3GeV and evolved

Eigenvectors formed in A_i space (20 for CTEQ, 15 for MRST)

'Error' PDF sets provided for each eigenvector at $\Delta \chi^2$ =100(CTEQ) or 50(MRST) from best fit.

PDF uncertainties in W/Z

$$\sigma \cdot Br(W \rightarrow \ell v) = (2777 \pm 10_{stat} \pm 52_{sys} \pm 167_{lum}) \text{ pb} (CDF, 72/pb)$$

$$\sigma \cdot Br(Z/\gamma^{*} \rightarrow \ell \ell) = (254.3 \pm 3.3_{stat} \pm 4.3_{sys} \pm 15.3_{lum}) \text{ pb} (CDF, 72/pb)$$

Cross-section systematic uncertainties < 2% of which PDF uncert. ~1%

Luminosity uncertainty cancels entirely in ratio $R = \sigma_W / \sigma_Z$, but PDF does not

R =
$$10.84 \pm 0.15_{stat} \pm 0.14_{sys} \longrightarrow \Gamma(W) = 1092 \pm 42 \text{ MeV}$$

~0.6% from PDFs

Can design measurements to minimise PDF uncert., eg use same selection for W,Z; extract R from $\cancel{E_T}$ fit reduces PDF uncertainty to **0.3%**

Aidan Robson

Glasgow University

4/30

PDF uncertainties in $\sigma_{t\bar{t}}$, m_{W}

Top pair production

theoretical calculation $\sigma(p\bar{p}\rightarrow t\bar{t}) = 6.7^{+0.7}_{-0.9}$ pb principal contribution is PDF uncertainty (~10%) combined CDF measurement, 760/pb: $(7.3 \pm 0.5_{stat} \pm 0.6_{sys} \pm 0.4_{lum})$ pb

W mass

CDF preliminary, for 200/pb data

Systematic Uncert.	Electrons	Muons
lepton scale & resn	70	30 roughly scale w/
recoil scale & resn	50	50 scale w/
backgrounds	20	20
QED	15	20
W p_T model	15	15
PDFs	15	15

Total uncertainty: 76 MeV (expected in 2/fb: 40 MeV)

Z rapidity

Glasgow University

7/30

Aidan Robson

Forward W

Forward W

Central electron result: $\sigma_W = (2771 \pm 14 _{stat} ^{+62} _{-56} _{sys} \pm 166 _{lum})$ pb

Forward electron result: $\sigma_{\rm W}$ = (2796 ± 13 $_{\rm stat}$ $_{-90}^{+95}$ sys ± 162 $_{\rm lum}$) pb

Define visible cross-section $\sigma_{vis} = \sigma_{tot} \times A$

Ratio of $\sigma_{\rm vis}$ in central/forward regions sensitive to PDF distributions

$$R_{\text{exp}} = \sigma^{\text{cent}}_{\text{vis}} / \sigma^{\text{forw}}_{\text{vis}} = 0.925 \pm 0.033$$

$$R_{\text{th}} = A^{\text{cent}}_{\text{vis}} / A^{\text{forw}}_{\text{vis}} = 0.924 \pm 0.037 \text{ (CTEQ 6.1)}$$

= 0.941 ± 0.012 (MRST01E)

Uncertainties on R_{exp} :

	CAP
electron identification	±2.5%
track reconstruction	±1.1%
luminosity	±1%
backgrounds	±1%

Forward W

W charge asymmetry

$$A_{W}(y) = \frac{d\sigma(W^{+})/dy - d\sigma(W^{-})/dy}{d\sigma(W^{+})/dy + d\sigma(W^{-})/dy}$$

$$A_{\ell}(\eta) = \frac{d\sigma(\ell^{+})/d\eta - d\sigma(\ell^{-})/d\eta}{d\sigma(\ell^{+})/d\eta + d\sigma(\ell^{-})/d\eta} = A(y_{W}) \otimes (V-A) \sim \frac{d(x)}{u(x)}$$

Aidan Robson

Glasgow University

11/30

W charge asymmetry

DIS α q^2 so u is well measured

Run 1 measurement resulted in d quark increased by 30% at $Q^2=(20\text{GeV})^2$

Aidan Robson

Glasgow University

12/30

W charge asym. – D0

muon channel, p_T >20 GeV/c, $\not\not\!\!E_T$ >20 GeV, M_T >40 GeV/ c^2 isolated track with hits in fibre tracker and silicon main systematic uncertainty hadronic energy scale (for $\not\!\!E_T$) sensitive to d/u for 0.005<x<0.3

W charge asym. – CDF

W charge asym. – CDF in progress

 $d\sigma/dy$ is an input; iterate to remove dependence.

Studies suggest improved sensitivity.

We would like to probe the W rapidity directly

 M_{W} constraint \rightarrow two kinematic solutions for p_{τ} of v. Ambiguity can be resolved statistically from known centre-of-mass θ^* distribution for V-A decay

→ weight solutions

High-x gluon

Run 1 Inclusive Jets

PDF uncertainty was underestimated – data was in fact consistent with SM

Jet Algorithms

Run 2 midpoint algorithm

Based on cone in (η, ϕ)

Extra seed placed at midpoint (η,ϕ) of pairs of proto-jets separated by less than 2R for improved IR safety.

Merging/splitting of overlapping jets

Run 2 k_T algorithm

Proto-jets combined according to separation in transverse momentum k_T , starting from smallest k_T

Inclusive Jets

Events collected with single-jet triggers Interactions required to be in centre of detector (D0 |z|<50cm, CDF |z|<60cm) Missing E_⊤ required to be low (remove cosmic/beam backgrounds)

Jets clustered

Effects of multiple pp interactions removed D0 estimate from "offset energies" from zero-bias events CDF estimate from # reconstructed vertices

Calorimeter jets unfolded to hadron-level jets:

CDF&D0: bin-by-bin unfolding determined from simulation

D0 also uses parameterised functional form

pQCD partons reconstructed into jets for comparison non-perturbative contributions from underlying event and fragmentation added.

Inclusive Jet Uncertainties

Main uncertainty: jet energy scale

CDF: $\pm 2-3\%$ JES uncertainty translates to $\pm 9\%$ cross-section uncertainty at low p_{T}^{jet} , $\pm 60\%$ at high p_{T}^{jet} also $\pm 8\%$ uncertainty on jet resolution

D0:

D0 midpoint

cone 0.7 f_{merge} 0.5

normalised to theory at p_T =100GeV/c

D0 midpoint

CTEQ Error sets

MRST/CTEQ and Alekhin/CTEQ

$CDF k_T$

To make comparisons with calculation, include correction for non-perturbative contributions

estimated by turning on/off fragmentation, interactions with beam remnants.

CDF Run II Preliminary

K_∓ D=0.7

Parton to hadron level correction

Monte Carlo Modeling Uncertainties

Aidan Robson

Glasgow University

23/30

$CDF k_T$

Measured in 5 bins of y^{jet}

Forward jet ⇒ asymmetric interaction

Don't expect new physics in high y^{jet} region

$CDF k_T$

CDF midpoint

cone 0.7 f_{merge} 0.75

CDF midpoint

Glasgow University

27/30

Aidan Robson

Z+b

direct probe of proton b content – compare with radiative generation

$$R= \frac{\sigma(Z+bjet)}{\sigma(Z+jet)}$$

Z in association with jets $R_{cone} = 0.7$, $|\eta|^{jet}|<1.5$, $E_T(p_T)>20$ GeV

b jets "tagged" by displaced vertex CDF: b fraction extracted from mass of secondary vertex D0: charm content assumed from

D0: charm content assumed from theoretical prediction N_c =1.69 N_b

$$\sigma(Z/\gamma^* + bjet)$$
.Br($Z/\gamma^* \rightarrow ee \text{ or } \mu\mu$)
= $(0.93 \pm 0.29_{stat} \pm 0.21_{sys}) \text{ pb}$

CDF 335/pb

NLO: 0.52pb

CDF 335/pb
$$0.0236 \pm 0.0074_{stat} \pm 0.0053_{sys}$$

D0 180/pb
$$0.021 \pm 0.004_{\text{stat}} \, ^{+0.002}_{-0.003} \, _{\text{sys}}$$

single top / Higgs background

Tevatron performance

Summary

As Tevatron datasets increase, PDF uncertainties becoming significant:

- ◆ acceptance calculations
- ◆ theoretical predictions
- ♦ template shapes
- ♦ background estimates
- **♦**

Several measurements underway that have good PDF constraining power and are unique to Tevatron:

- ♦ W charge asymmetry for d/u
- ◆ Inclusive jet cross-section for high-x gluon

Other analyses seem promising

- ◆ Z rapidity
- ♦ Forward W
- ♦ Z+b

key for LHC

Jet Algorithms

Run 1 cone algorithm

construct cones around seed towers construct cones around these proto-jets merge if common $E_{\tau} > 75\%$ of smallest jet

Not IR safe:

before soft parton emission (2 jets)

after soft parton emission (1 jet)

Not collinear

safe: below threshold above threshold (no jets)

(1 jet)

Run 2 midpoint algorithm

Put extra seed at midpoint (η,ϕ) of pairs of proto-jets separated by less than 2R. Iterate.

Merge/split.

Jet Algorithms

Run 2 k_T algorithm

Make an ordered list of $\begin{cases} d_{ij} = \min[\ (p_T^{i})^2\ ,\ (p_T^{j})^2\] \\ d_i = (p_T^{i})^2 \end{cases}$ algorithm parameter

Start from smallest $\{d_{ij}, d_i\}$

If it is a d_i it is called a jet and removed from the list If it is d_{ij} the particles are combined in a "proto jet" Iterate

D0 midpoint

